evofr.models.renewal_model package

Subpackages

Submodules

evofr.models.renewal_model.LAS module

LAS_Laplace(beta_name, k)
class LaplaceRandomWalk(scale=1.0, num_steps=1, validate_args=None)

Bases: Distribution

Laplace random walk based on numpyro built in Gaussian Random Walk.

arg_constraints = {'scale': Positive(lower_bound=0.0)}
log_prob(*args, **kwargs)

Evaluates the log probability density for a batch of samples given by value.

Parameters:

value – A batch of samples from the distribution.

Returns:

an array with shape value.shape[:-self.event_shape]

Return type:

numpy.ndarray

property mean

Mean of the distribution.

reparametrized_params = ['scale']
sample(key, sample_shape=())

Returns a sample from the distribution having shape given by sample_shape + batch_shape + event_shape. Note that when sample_shape is non-empty, leading dimensions (of size sample_shape) of the returned sample will be filled with iid draws from the distribution instance.

Parameters:
  • key (jax.random.PRNGKey) – the rng_key key to be used for the distribution.

  • sample_shape (tuple) – the sample shape for the distribution.

Returns:

an array of shape sample_shape + batch_shape + event_shape

Return type:

numpy.ndarray

support = RealVector(Real(), 1)
tree_flatten()
classmethod tree_unflatten(aux_data, params)
property variance

Variance of the distribution.

evofr.models.renewal_model.model_factories module

evofr.models.renewal_model.model_functions module

apply_delay(infections, delay)
forward_simulate_EC(I0, R, rho, gen_rev, delays, seed_L)
forward_simulate_I(m, R, gen_rev, delays, seed_L)
forward_simulate_I_and_prev(m, R, gen_rev, delays, inf_period, seed_L)
get_infections(I0, R, g_rev, seed_L)
get_infections_intros(m, R, g_rev, seed_L)
reporting_to_vec(rho, L)
v_fs_I(m, R, gen_rev, delays, seed_L)

Vectorized version of forward_simulate_I. Takes similar arguments as forward_simulate_I but with additional array axes over which forward_simulate_I is mapped.

evofr.models.renewal_model.model_helpers module

continuous_dist_to_pmf(dist)
discretise_gamma(mn, std)
discretise_lognorm(mn, std)
get_standard_delays()
is_obs_idx(v)
pad_delays(delays)
pad_to_obs(v, obs_idx, eps=1e-12)
to_survivor_function(delay)

evofr.models.renewal_model.model_options module

class DirMultinomialSeq(xi_prior=None)

Bases: object

model(seq_counts, N, freq, pred=False)
class FixedGA(gam_prior=0.5, prior_family='Cauchy')

Bases: object

model(N_variant, X)
class FreeGrowth(gam_prior=0.5, prior_family='Cauchy')

Bases: object

model(N_variant, X)
class GAPRW(gam_prior=0.5, gam_delta_prior=0.5)

Bases: object

model(N_variant, X)
class GARW(gam_prior=0.5, gam_delta_prior=0.5, prior_family='Cauchy')

Bases: object

model(N_variant, X)
class MultinomialSeq

Bases: object

model(seq_counts, N, freq, pred=False)
class NegBinomCases(raw_alpha_sd=0.01)

Bases: object

model(cases, EC, pred=False)
class PoisCases

Bases: object

model(cases, EC, pred=False)
class ZINegBinomCases(raw_alpha_sd=0.01)

Bases: object

model(cases, EC, pred=False)
class ZIPoisCases

Bases: object

model(cases, EC, pred=False)

evofr.models.renewal_model.renewal_model module

class RenewalModel(g, delays, seed_L=None, forecast_L=None, k=None, RLik=None, CLik=None, SLik=None, v_names=None, basis_fn=None)

Bases: ModelSpec

Parameters:
  • seed_L (int | None)

  • forecast_L (int | None)

  • k (int | None)

  • v_names (List[str] | None)

  • basis_fn (BasisFunction | None)

augment_data(data)

Augments existing data for inference with model specific information.

make_model()

evofr.models.renewal_model.renewal_regression module

class RenewalRegressionModel(gen, k=None, CLik=None, SLik=None, v_names=None, basis_fn=None)

Bases: ModelSpec

Parameters:
  • k (int | None)

  • v_names (List[str] | None)

  • basis_fn (BasisFunction | None)

augment_data(data, order=4)

Augments existing data for inference with model specific information.

make_model()
renewal_regression_model_factory(g_rev, CaseLik=None, SeqLik=None)
rt_from_incidence(incidence, gen_rev, T)

evofr.models.renewal_model.renewal_single_variant module

class SingleRenewalModel(g, delays, seed_L, forecast_L, inf_period=None, k=None, CLik=None, basis_fn=None, day_of_week_effect=True)

Bases: ModelSpec

Parameters:
  • seed_L (int)

  • forecast_L (int)

  • k (int | None)

  • basis_fn (BasisFunction | None)

  • day_of_week_effect (bool)

augment_data(data)

Augments existing data for inference with model specific information.

make_model()

evofr.models.renewal_model.spline_incidence module

class SplineIncidenceModel(k=None, CLik=None, SLik=None)

Bases: ModelSpec

augment_data(data, order=4)

Augments existing data for inference with model specific information.

make_model()

Module contents