evofr.plotting package
Submodules
evofr.plotting.plot_functions module
- add_dates(ax, dates, sep=1)
- add_dates_sep(ax, dates, sep=7)
- plot_R(ax, samples, ps, alphas, colors, forecast=False, plot_neutral_line=True)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
plot_neutral_line (bool | None)
- plot_R_censored(ax, samples, ps, alphas, colors, forecast=False, thres=0.001, plot_neutral_line=True)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
thres (float | None)
plot_neutral_line (bool | None)
- plot_cases(ax, LD)
- plot_ga_time_censored(ax, samples, ps, alphas, colors, forecast=False, thres=0.001, plot_pivot_line=True, dates=None)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
thres (float | None)
plot_pivot_line (bool | None)
dates (List | None)
- plot_growth_advantage(ax, samples, LD, ps, alphas, colors, plot_pivot_line=True)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
plot_pivot_line (bool | None)
- plot_little_r_censored(ax, samples, ps, alphas, colors, forecast=False, thres=0.001, plot_neutral_line=False)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
thres (float | None)
plot_neutral_line (bool | None)
- plot_observed_frequency(ax, LD, colors)
- Parameters:
colors (List[str])
- plot_observed_frequency_size(ax, LD, colors, size)
- Parameters:
colors (List[str])
size (Callable)
- plot_posterior_I(ax, samples, ps, alphas, colors, forecast=False)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
- plot_posterior_average_R(ax, samples, ps, alphas, color, plot_neutral_line=True)
- Parameters:
ps (List[float])
alphas (List[float])
color (str)
plot_neutral_line (bool | None)
- plot_posterior_frequency(ax, samples, ps, alphas, colors, forecast=False)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
- plot_posterior_smooth_EC(ax, samples, ps, alphas, color)
- Parameters:
ps (List[float])
alphas (List[float])
color (str)
- plot_posterior_time(ax, t, med, quants, alphas, colors, included=None)
Loop over variants to plot medians and quantiles at specifed points. Plots all time points unless time points to be included are specified in ‘included’.
- Parameters:
ax – Matplotlib axis to plot on.
t – Time points to plot over.
med – Median values.
quants – Quantiles to be plotted. Organized as a list of CIs as Arrays.
alphas (List[float]) – Transparency for each quantile.
colors (List[str]) – List of colors to use for each variant.
included (List[bool] | None) – optional list of bools which determine which time points and variants to include observations from.
- plot_ppc_cases(ax, samples, ps, alphas, color)
- Parameters:
ps (List[float])
alphas (List[float])
color (str)
- plot_ppc_frequency(ax, samples, LD, ps, alphas, colors, forecast=False)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
- plot_ppc_seq_counts(ax, samples, ps, alphas, colors, forecast=False)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
- plot_site(ax, site, samples, ps, alphas, colors, forecast, times)
- plot_time_varying_single(ax, site, samples, ps, alphas, color)
- Parameters:
ps (List[float])
alphas (List[float])
color (str)
- plot_time_varying_variant(ax, site, samples, ps, alphas, colors, forecast=False)
- Parameters:
ps (List[float])
alphas (List[float])
colors (List[str])
forecast (bool | None)
- plot_total_by_median_frequency(ax, samples, LD, total, colors)
- Parameters:
colors (List[str])
- plot_total_by_obs_frequency(ax, LD, total, colors)
- Parameters:
colors (List[str])
- prep_posterior_for_plot(site, samples, ps, forecast=False)
Prep posteriors for plotting by finding time span, medians, and quantiles.
- Parameters:
site – Name of the site to access from samples.
samples – Dictionary with keys being site or variable names. Values are Arrays containing posterior samples with shape (sample_number, site_shape).
ps (List[float]) – Levels of confidence to generate quantiles for.
forecast (bool | None) – Prep posterior for forecasts? Defaults to False.